Sufficiency of cut-generating functions

نویسندگان

  • Gérard Cornuéjols
  • Laurence A. Wolsey
  • Sercan Yildiz
چکیده

This note settles an open problem about cut-generating functions, a concept that has its origin in the work of Gomory and Johnson from the 1970’s and has received renewed attention in recent years.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On sublinear inequalities for mixed integer conic programs

This paper studies K-sublinear inequalities, a class of inequalities with strong relations to K-minimal inequalities for disjunctive conic sets. We establish a stronger result on the sufficiency of K-sublinear inequalities. That is, we show that when K is the nonnegative orthant or the second-order cone, K-sublinear inequalities together with the original conic constraint are always sufficient ...

متن کامل

How to choose what you lift

We explore the lifting question in the context of cut-generating functions. Most of the prior literature on lifting for cut-generating functions focuses on which cut-generating functions have the unique lifting property. Here we develop a general theory for understanding how to do lifting for cut-generating functions which do not have the unique lifting property.

متن کامل

On composition of generating functions

In this work we study numbers and polynomials generated by two type of composition of generating functions and get their explicit formulae. Furthermore we state an improvementof the composita formulae's given in [6] and [3], using the new composita formula's we construct a variety of combinatorics identities. This study go alone to dene new family of generalized Bernoulli polynomials which incl...

متن کامل

Some cut-generating functions for second-order conic sets

In this paper, we study cut generating functions for conic sets. Our first main result shows that if the conic set is bounded, then cut generating functions for integer linear programs can easily be adapted to give the integer hull of the conic integer program. Then we introduce a new class of cut generating functions which are non-decreasing with respect to second-order cone. We show that, und...

متن کامل

Minimal Cut-Generating Functions are Nearly Extreme

We study continuous (strongly) minimal cut generating functions for the model where all variables are integer. We consider both the original Gomory-Johnson setting, as well as a recent extension by Cornuéjols and Yıldız. We show that for any continuous minimal or strongly minimal cut generating function, there exists an extreme cut generating function that approximates the (strongly) minimal fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 152  شماره 

صفحات  -

تاریخ انتشار 2015